
Scalable Computation of Streamlines
on Very Large Datasets ∗

Dave Pugmire
Oak Ridge National

Laboratory
PO Box 2008 MS6016

Oak Ridge, TN 37831-6016
pugmire@ornl.gov

Hank Childs
Lawrence Berkeley National

Laboratory
One Cyclotron Road
Berkeley, CA, 94701
hchilds@lbl.gov

Christoph Garth
University of California, Davis

One Shields Ave.
Davis, CA, 95616

cgarth@ucdavis.edu

Sean Ahern
Oak Ridge National

Laboratory
PO Box 2008 MS6016

Oak Ridge, TN 37831-6016
ahern@ornl.gov

Gunther H. Weber
Lawrence Berkeley National

Laboratory
One Cyclotron Road
Berkeley, CA, 94701
ghweber@lbl.gov

ABSTRACT
Understanding vector fields resulting from large scientific
simulations is an important and often difficult task. Stream-
lines, curves that are tangential to a vector field at each
point, are a powerful visualization method in this context.
Application of streamline-based visualization to very large
vector field data represents a significant challenge due to the
non-local and data-dependent nature of streamline compu-
tation, and requires careful balancing of computational de-
mands placed on I/O, memory, communication, and proces-
sors. In this paper we review two parallelization approaches
based on established parallelization paradigms (static de-
composition and on-demand loading) and present a novel
hybrid algorithm for computing streamlines. Our algorithm
is aimed at good scalability and performance across the
widely varying computational characteristics of streamline-
based problems. We perform performance and scalability
studies of all three algorithms on a number of prototypi-
cal application problems and demonstrate that our hybrid
scheme is able to perform well in different settings.

Keywords
visualization, streamlines, flow, scaling, parallel

∗(Does NOT produce the permission block, copyright infor-
mation nor page numbering). For use with ACM PROC -
ARTICLE-SP.CLS. Supported by ACM.

1. INTRODUCTION
Simulations on the current generation of supercomputers are
producing data sets of unprecedented scale. To achieve the
fundamental goal of scientific insight from the resulting very
large datasets, a variety of problems must be addressed per-
taining to their storage and handling. For simulations that
involve vector fields, integral curves, or streamlines, are one
of the most illuminating techniques to obtain insight; they
are a cornerstone of visualization and analysis across a great
variety of application domains. Drawing on an intuitive
interpretation in terms of particle movement, they are an
ideal tool to illustrate and describe a wide range of phenom-
ena encountered in the study of application-domain vector
fields, such as transport and mixing in fluid flows. However,
calculating integral curves in large data presents a signif-
icant challenge because their calculation is non-local and
data dependent. Thus, leveraging parallel computational
resources to achieve scalable and well-performing visualiza-
tion in this setting requires optimal parallelization strategies
that adapt smartly to the widely varying characteristics of
integral curve computation.

Starting from these observations, in this work, we ex-
plore a number of such algorithms and introduce a novel
adaptive parallelization scheme that addresses some of the
unique problems of parallel streamline computation and pro-
vides improved performance. While efforts towards parallel
streamlines are typically focused mostly on the size of the
considered vector field data or are aimed at accelerating a
pre-chosen visualization technique, the discussion and paral-
lelization scheme we present here are aimed at a very general
setting. Beyond taking into account data size, we also focus
on an analysis of the different characteristics of integration-
based problems, such as for example the number of integral
curves to be computed, to guarantee good parallelization
and scalability over a wide range of situations encountered
in applications.



Overall, we provide a comprehensive analysis of three dif-
ferent parallel strategies. The first two studied schemes,
static data decomposition and an on-demand loading of re-
quired data, refer to established parallelization paradigms.
The novel parallelization strategy we present here is a hy-
brid method, aimed at optimal load balancing with minimal
I/O and good scalability. The key design aspect of our new
method is to exploit coherency in streamline computation to
allow an optimal workload distribution across processors. To
obtain insight into the respective characteristics and perfor-
mance of all three approaches, we study their behavior on
a number of representative application problems involving
integral curve computation. Besides documenting the per-
formance benefit available from our hybrid scheme, we aim
at providing data points and heuristics that can generally
help scientists choose a parallelization strategy depending
on the parameters of an integration-based problem.

The remainder of the paper is structured as follows.
After briefly examining the visualization background of
streamline-based methods and reviewing previous work in
Section 2, we discuss the general setting that we base our
analysis on in Section 3. This includes a detailed descrip-
tion of the considered application problems and the different
degrees of freedom that determine their respective compu-
tational characteristics. We then describe the paralleliza-
tion strategies we consider here and introduce a new hybrid
scheme in Section 4, together with a consideration of some
of the theoretical performance aspects of all three methods.
Section 5 reports performance measurements and provides
a discussion of the observed behavior and scalability of the
different strategies. Finally, in Section 6, we provide a num-
ber of heuristic decision guidelines based on the observed
measurements that can be used to pick one of the presented
parallelization strategies for future problems.

While the discussion in this paper is largely implementation-
agnostic, we wish to point out that the methods described
here are easily implemented using commonly used visual-
ization pipeline architectures. Specifically, we provide a
full implementation of the present work in the open-source
VisIt [1] visualization system that is freely available to the
research community.

2. BACKGROUND AND
PREVIOUS WORK

2.1 Streamlines
For a stationary vector field v that does not depend on time,
an integral curve is called a streamline and is given by the
ordinary differential equation

Ṡ(t) = v(S(t, x)) and S(t0) = x0. (1)

Hence it describes a parameterized curve that starts at the
seed point x0 and is tangent to v over its parameter interval
[t0, t1] for t0 < t1.

In the discrete setting we are concerned with in this work,
streamlines are approximated using numerical integration
methods to approximate the describing ordinary differential
equations. There is an extensive body of work on this topic,
and we refer the interested reader to [11]. In our streamline
implementation, we use an integration scheme of Runge-

Kutta type with adaptive stepsize control as proposed by
Dormand and Prince [18]. However, the material discussed
in the remainder of this paper equally applies to most other
customarily used integration schemes.

The visualization and analysis of vector fields is an active re-
search area, and so-called integration-based techniques that
derive vector field visualization from integral curves have
progressed well beyond the direct depiction of individual
streamlines or a small subset of them [16]. Integral surface
techniques [10, 13] compute and visualize a surface consist-
ing of all streamlines emanating from a common curve, while
flow volumes examine the behavior of entire volumes of par-
ticles [23, 2]. Topological methods, on the other hand, aim
at extracting the structural skeleton of a vector field by con-
sidering the dynamical system induced by it and computing
critical points and stable and unstable manifolds. More re-
cently, the notions of Finite-Time Lyapunov Exponents and
Lagrangian Coherent Structures [12, 15, 19] were introduced
to allow for an accurate structural analysis of time-varying
vector fields. These Lagrangian methods, which can require
many thousands to millions of streamlines, are built on ob-
serving the separation between closely neighboring particles
as they are advected, and coherent structures are then iden-
tified by lines and surfaces along which this separation is
maximal.

2.2 Parallel Streamline Computation
The parallel solution of streamline-based problems has been
considered in previous work using different approaches.
An early treatment of the topic was given by Sujudi and
Haimes [21], who made use of distributed computation by
splitting a block in consideration into several sub-blocks and
assigning each processor one such sub-block. A streamline
is communicated among processors as it traverses different
sub-blocks.

Other examples of applying parallel computation to
streamline-based visualization include the use of multipro-
cessor workstations to parallelize integral curve computation
(e.g. [14]), and research efforts were focused on accelerating
specific visualization techniques [4]. Similarly, PC cluster
system were leveraged in to accelerate visualization of time-
varying Line Integral Convolution volumes [17] or particle
visualization for very large data [7].

Focusing on data size, out-of-core techniques are commonly
used in large-scale data applications where data sets are
larger than main memory. These algorithms focus on achiev-
ing optimal I/O performance to access data stored on disk.
For vector field visualization, [22] presented a technique to
compute streamlines in large unstructured grids using an
octtree partitioning of the vector field data for fast fetch-
ing during streamline construction small memory footprint.
Taking a different approach, Bruckschen et al. [3] describe a
technique for real-time particle traces of large time-varying
data sets, by isolating all integral curve computation in a
pre-processing stage. The output is stored on disk and can
then be efficiently loaded during the visualization phase.

More recently, different partitioning methods were intro-
duced with the aim of optimizing parallel integral curve
computation. Yu et al. [24] introduced a parallel integral



curve visualization that computes a set of representative,
short integral segments termed pathlets in time-varying vec-
tor fields. A preprocessing step computes a binary clustering
tree that is used for seed point selection and block decompo-
sition. This seed point selection method mostly eliminates
the need for communication between processors, and the au-
thors are able to show good scaling behavior for large data.
However, this scaling behavior comes at the cost of increased
preprocessing time and, more importantly, loss of the abil-
ity to choose arbitrary, user-defined seed-points, which is
often necessary when using streamlines for data analysis as
opposed to getting a qualitative data overview. Chen and
Fujishiro [6] apply a spectral decomposition using a vector-
field derived anisotropic differential operator to achieve a
similar goal.

Two of the methods discussed in this paper (static parti-
tioning and load on demand) are roughly similar to previous
work in that they make use of straightforward paralleliza-
tion strategies to achieve parallel streamline computation.
In contrast, our novel hybrid parallelization scheme paral-
lelizes over both streamlines and data size simultaneously,
and is thus able to provide improved performance over a
wide range of typical scenarios for streamline-based visual-
ization (cf. Sections 3.1). Consequently, the material we
provide in the following is intentionally general and does
not imply a specific visualization choice or algorithm where
advantage could be taken of specific data partitions or seed
sets.

Furthermore, we are explicitly aiming at treating unmodi-
fied and pre-partitioned data, as output from a simulation.
Since a global pre-analysis and re-partitioning of the consid-
ered vector field data is computationally expensive and often
infeasible due to storage requirements, we do not consider
methods requiring such analysis here. Rather, we wish to
enable application scientists to apply integration-based vi-
sualization to their simulation or measurement data in an
“out-of-the-box” fashion. Finally, we note that the algo-
rithms we describe are ideal for integration with the cur-
rent generation of distributed memory parallel visualization
tools, where much of the previous work, for example the
work described in [24], would require such tools to undergo
large architectural changes.

3. SETTING
In this paper, we are aiming to both qualify and quantify the
performance of three different parallelization strategies for
streamline computation. Before we provide a discussion of
the latter in Section 4, we will first discuss the strongly vary-
ing characteristics of integration-based application problems
that are likely to have a significant impact on the perfor-
mance of individual schemes and introduce a number of rep-
resentative application problems that illustrate them.

3.1 Problem Classification
We classify streamline-based problems according to the four
criteria that are described in the following:

Data Set Size. The size of the data set describing the vec-
tor field under consideration is crucial in choosing a par-
allelization strategy. If the considered field is small in the

sense that it fits into main memory in its entirety, then op-
timally performing integral curve computation profits most
from distributed computation and to a lesser amount from
distributed data. This scenario typically corresponds to a
problem where a large number of streamlines must be com-
puted over a relatively small dataset, such as is often encoun-
tered when applying Lagrangian analysis or statistical anal-
ysis of integral curves or particle trajectories. Conversely,
large data cannot be loaded in its entirety and thus requires
a form of on-demand loading of required parts of the data.
Here, adaptive distribution of data over the available paral-
lel resources and optimal scheduling and dispatch of integral
curve computation are necessary traits of a well-performing
parallelization approach.

Seed Set Size. If the problem at hand requires only the
computation of a few tens to a hundred streamline, parallel
computation takes a secondary place to optimal data distri-
bution and loading; we refer to the corresponding seed set
as small, and they are most often encountered in interactive
exploration scenarios where few integral curves are interac-
tively seeded by a user. A large seed set encompasses many
thousands of seed points for integral curves. For such prob-
lems to remain computationally feasible, it is paramount
that the considered data distribution scheme allows for par-
allel computation of integral curves.

Seed Set Distribution. Similar to the seed set size, the
distribution of seed points is an important problem charac-
teristic. In the case where seed points are located densely
within the spatial and temporal domain of definition of a
vector field, it is likely that it will traverse a relatively small
amount of the overall data. For some applications such as
streamline statistics, on the other hand, a sparse seed point
set covers the entire vector field domain. This results in in-
tegral curves traversing the entire data set. Hence, the seed
set distribution determines strongly if performance stands
to gain most from parallel computation, data distribution,
or both.

Vector Field Complexity. Depending on the choice of seed
points, the structure of a vector field can have a strong in-
fluence on which parts of the data need to be taken into
account in the integral curve computation process. Critical
points or invariant manifolds of strongly attracting nature
draw streamlines towards them, and the resulting integral
curves seeded in or traversing their vicinity remain closely
localized. On the other hand, the opposite case of a nearly
uniform vector field requires integral curves to pass through
large parts of the data. This dependency of streamline com-
putation on the underlying vector field is both counterintu-
itive and hard to identify without conducting prior analysis
to determine the field structure as is done e.g. in [24]. While
such analysis can be useful for specific problems, in the con-
text of this paper we are considering a more general setting
and do not wish to burden a user with the selection of an ap-
propriate scheme and the extensive computation and storage
requirements it entails.

Overall, these problem characteristics determine to what ex-
tent a given integration-based problem can profit from par-
allel computation and data distribution. We next describe a



Figure 1: Streamlines in the astrophysics dataset
seeded outside the proto-neutron star illustrate the
nature of the complex magnetic field inside the su-
pernova shock front.

number of prototypical real-world application problems that
exhibit varying characteristics and upon which we base our
performance studies.

3.2 Application Problems
To test the effectiveness of the three streamline algorithms
outlined below, we apply them to a number of problems that
represent typical application scenarios. The datasets include
astrophysics, magnetically confined fusion, and thermal hy-
draulics simulations on regular grids1; for each dataset, we
consider initial conditions that are both sparse and dense in
the respective vector field domains. All analysis test runs for
this paper were performed on JaguarPF, a 149,296 processor
Cray XT5, located at Oak Ridge National Laboratory.

Astrophysics / Supernova Simulation. For the astro-
physics case study, we create streamlines in the magnetic
field surrounding a solar core collapse resulting in a super-
nova. See Figure 1. The vector field used is derived from
the magnetic field computed by a GenASiS simulation [8], a
multi-physics code being developed for the simulation of as-
trophysical systems involving nuclear matter [5]. GenASiS
computes the magnetic field at each cell face. For the pur-
poses of this scaling study, a cell-centered vector is created
by differencing the values at faces in the X, Y and Z di-
rections. Node-centered vectors are generated by averaging
adjacent cells to each node. We then resample these vectors
onto a grid of various sizes to measure performance of the
streamline generation algorithms. For the purpose of this
scaling study, we sampled the magnetic field onto 512 blocks
with 1 million cells per block. Streamlines performance is
studied for both sparse and dense seed points sets.

Tokamak / Magnetically Confined Fusion. The second
dataset we consider here results from a simulation of mag-

1While results for regular grids are presented in this work,
the algorithms discussed also work on arbitrary grids.

Figure 2: Streamlines show the flow of the magnetic
field inside the toroidal plasma chamber.

netically confined fusion in a tokamak device. The simu-
lation was performed using the NIMROD code [20]. This
dataset has the unusual property that most streamlines are
approximately closed and traverse the torus-shaped vector
field domain repeatedly (see Figure 2). However, there are
also streamlines that exhibit chaotic behavior and traverse
the entire domain as integration time approaches infinity.
This is of interest to the material presented here as highly
localized streamlines can diverge strongly over time.

For the purposes of this scaling study, the original mesh is
resampled onto 512 blocks with 1 million cells per block, and
again, streamline performance is studied for both sparse and
densely seeded point sets.

Thermal Hydraulics. Figure 3 illustrates streamlines in a
thermal hydraulics simulation. Here, twin inlets pump water
into a box, with a temperature difference between the water
inserted by each inlet; eventually the water exits through
an outlet. The mixing behavior and the temperature of the
water at the outlet are of interest. Non-optimal mixing can
be caused by long-lived recirculation zones that effectively
isolate certain regions of the domain from heat exchange.

The time-varying simulation was performed using the
Nek5000 code[9] on a regular grid of twenty-three million
elements. Streamlines are seeded according to two appli-
cation scenarios. First, streamlines are placed uniformly
through the volume to show areas of high velocity, areas
of stagnation, and areas of recirculation. Second, we seed
the streamlines densely around one of the inlets, to see the
behavior of particles entering through the inlet. The result-
ing streamlines illustrate the turbulence in the immediate
vicinity of the inlet. Figure 4 depicts this using a stream
surface, which are well suited to this type of visualization.
To replicate the conditions of stream surface computation
for scalability analysis, we have seeded 22,000 streamlines
in the shape of a circle immediately around the inlet.



Figure 3: Streamlines in the thermal hydraulics
dataset illustrate illustrate how the water from twin
inlets mix in a box. One inlet introduces warm wa-
ter (orange), while the other introduces cold water
(blue). Although the warm water dominates one
side of the box, both temperatures mix before ulti-
mately exiting through the outlet in the upper right.

4. PARALLELIZATION STRATEGIES
In all algorithms, the problem mesh is decomposed into a
number of spatially disjoint blocks. Each block may or may
not have ghost cells for connectivity purposes. Each block
has a time step associated with it, thus two blocks that
occupy the same space at different times are considered in-
dependent. The three primary algorithms that we present
differ fundamentally in how blocks are assigned and reas-
signed among processors, changing the I/O, memory, and
processing profiles so as to address the challenges in data
set size, seed set size, seed set distribution, and vector field
complexity, as presented in Section 3.

4.1 Static Allocation
This algorithm is a parallelization across the components of
the mesh (blocks). In this algorithm we statically allocate
blocks to processors such that the first of n processors is
assigned the first 1/n of the blocks, the next processor the

Figure 4: A stream surface in the thermal hydraulics
dataset illustrates the strong turbulence in flow leav-
ing an inlet.

second 1/n of the blocks, etc. Each streamline is integrated
until it leaves the blocks owned by the processor. As each
streamline moves between blocks, it is communicated to the
processor that owns the block in which it currently resides.
A globally communicated streamline count is maintained so
that all processors may monitor how many streamlines have
yet to terminate. Once the count goes to zero, all processors
terminate.

4.2 Load On Demand
This algorithm is a parallelization across the streamlines.
In this algorithm, we split up the initial seed points evenly
among the processors, with 1/n of the streamlines assigned
to each of the n processors, grouped by block to enhance
data locality. Each processor integrates the streamlines as-
signed to it until streamline termination. As streamlines
move between blocks, each processor loads the appropri-
ate block into memory into an LRU (least-recently used)
cache. In order to minimize I/O, each processor integrates
all streamlines to the edge of the loaded blocks, loading a
block from disk only when there is no more work to be
done on the in-memory blocks. Each streamline is only
ever owned by one processor, though blocks may be loaded
by multiple processors. Each processor terminates indepen-
dently when all of its streamlines have terminated.

The Load On Demand algorithm makes use of caching of
blocks in a LRU fashion; old blocks are discarded if avail-
able main memory is insufficient to accommodate new blocks
that are required to continue streamline integration. Clearly,
having more main memory available decreases the need for
I/O operations.

4.3 Hybrid Master/Slave
This algorithm is a hybrid between Static Allocation and
Load On Demand. In this algorithm, we dynamically assign
both streamlines and blocks to processors in an attempt to
load balance on the fly based upon the processor workloads
and the nature of the vector field. It attempts to keep all
processors busy while also minimizing I/O by choosing either
to communicate streamlines to other processors or to have
processors load duplicate blocks based on heuristics.

Since detailed knowledge of flow is often unpredictable
or unknown, the Hybrid Master/Slave algorithm was de-
signed to adapt during the computation to concentrate
resources where they are needed, distributing streamlines
where needed, and/or duplicating blocks when needed.
Through this, we achieve parallelization across data size and
streamlines simultaneously, and are able to adapt to the
strongly varying characteristics of integration-based prob-
lems.

In this algorithm we have a master process that coordinates
the workloads of a fixed set of slave processors. The master
makes initial assignments to the slaves based on the initial
seed point assignment. As work progresses, the master mon-
itors the length of each slave’s work queue and the blocks
that are loaded and reassigns streamline computation to bal-
ance both slave overload and slave starvation. When the
master determines that all streamlines have terminated, it
instructs all slaves to terminate.



Algorithm 1 Slave process

PROCEDURE Slave

while (not done) do
while (streamlines to integrate) do

if Last streamline then
state ← Calculate slave state
Master ← state

end if

Compute a streamline
end while

Process messages from Master
end while

END Procedure

For scalable performance, we introduce the concept of mul-
tiple masters, allowing for multiple groups of slaves doing
work on different portions of the problem. The multiple
masters coordinate balancing the work between them, and
each master handles a number of slaves W . We typically
use one master per W = 32 slaves. Depending on the ma-
chine and network characteristics, a different number might
be chosen here.

The Hybrid Master/Slave algorithm is clearly the most com-
plex of the algorithms. The design of the slave process is
quite simple. Each slave continuously advances streamlines
that reside in blocks that are loaded. Similarly to Static Al-
location, blocks are cached to the extent permitted by main
memory. When the slave can advance no more streamlines
or is out of work, it sends a status message to the master
and waits for further instruction. In order to hide latency,
the slave sends the status message before it advances the last
streamline. At each iteration, the slave checks for incoming
instructions and streamlines. Initially, each slave is assigned
N = 10 streamlines. Pseudocode for the slave process is
shown in Algorithm 1.

The master is responsible for maintaining information on
each slave and managing their workloads. At regular inter-
vals, each slave sends a status message to the master so that
it may keep accurate global information. This status mes-
sage includes the set of streamlines owned by each slave,
which blocks those streamlines currently intersect, which
blocks are currently loaded into memory on that slave, and
how many streamlines are currently being integrated. Load
balancing is achieved by observing a slave overload limit
NO, and not reassigning streamlines if the total workload
would rise above this limit, which we typically choose as
NO = 20×N to obtain good results. Similarly, streamlines
are not migrated from a slave that has a significant number
NL of outstanding streamlines in the same block; rather, it
is faster for the slave to load this block and perform inte-
gration in it itself. In our experiments, we have obtained
good results with NL = 40. Together, NO and NL ensure a
balance between computation, I/O and communication, and
they allow tuning the algorithm towards specific hardware
characteristics such as slow network communication between
the slaves.

An incoming status message from a slave indicates that the

slave cannot perform more work. The master then makes
new assignments based on the following 5 basic rules:

Assignloaded: Master sends N seed points in block B to a
slave that has block B loaded.

Assignunloaded: Master sends N seed points in block B to
a slave. Slave loads block B.

Sendforce: Master instructs slave S1 to send streamlines in
block B to slave S2. The master only uses this rule if
its use will not increase the load on S2 above NO.

Sendhint: Master sends a hint to slave S1 to offload stream-
lines from a given set of blocks to slave S2 when appro-
priate. If S1 does not have any appropriate streamlines
to send, it ignores the hint. This rule allows the slaves
some measure of autonomy for efficiency purposes.

Load: Master instructs a slave to load block B.

Note that all slaves receive their initial allocation of work
through the Assignunloaded rule.

At initialization, the streamline seedpoints are distributed
equally to each master process. The master algorithm main-
tains a set of slave records, one record for each slave process.
When a slave no longer has work to perform the state is com-
municated to the master where work decisions are made.
Each time the state of the slave is updated, the rules de-
scribed above are applied. The rules are applied in order, as
described below.

When slave status updates arrive, the master identifies the
set of slaves with no work to do, if any, SW . For each slave S
in SW try to assign work by following this sequence in order,
terminating the sequence when slave S has been assigned
new work:

1. Through the use of the Sendforce rule, instruct S to
offload streamlines in unloaded blocks to other slaves
that have the block loaded.

2. If S has more than NL streamlines in any unloaded
block, instruct S to load the block using the Load rule.

3. The application of the Load rule above modifies the
set of blocks loaded by the group of slaves. Therefore,
check to see if other slaves can send streamlines in
unloaded blocks using the Sendforce rule.

4. If the master has any seed points in a block loaded
by S, send N seed points from that block using the
Assignloaded rule.

5. If the master has any seed points, send N seed points
from any block using the Assignunloaded rule. S loads
the block.

6. If S still has no work assigned, instruct S to load the
block populated with the most streamlines using the
Load rule.



7. Identify the slaves with the most streamlines to pro-
cess, SB . Randomly select one and send a message
using the Sendhint rule that S can be supplied with
work.

After any rule has supplied a slave with new work, the slave
is removed from SW and not considered for additional work
assignemnts until the slave has completed the newly assigned
work and sends a new update status back to the master. As
each rule is applied, the master updates its status records
for each affected slave. Based on the new work assignments,
the master knows the individual and collective state of the
group of slaves and is able to make decisions as new status
updates arrive. It is possible that after these steps are taken,
some slaves may still not have work to do. However, the next
time another slave posts a status, the collective state of the
work group changes and there is another opportunity for
work assignment.

5. PERFORMANCE DISCUSSION
To compare the efficiency of our parallelization strategies,
we apply each of the three algorithms to several representa-
tive datasets and seed point distribution scenarios and mea-
sure various aspects of performance. Because each algorithm
parallelizes differently over streamlines and blocks, it is in-
sightful to analyze the performance not only of total running
time but also other key metrics that are impacted directly
by the parallelization strategy choices.

As an overall metric, we consider total run time or wall clock
time of the algorithm. This metric includes the total time
to solution of each algorithm, including streamline compu-
tation, I/O and communication. Although of most interest
to the end user, this metric alone is not sufficiently fine-
grained to give insight into the performance of an algorithm
on a given dataset with a given initial seed set. To give
more fine-grained insight into performance, we also analyze
communication, I/O, and block management.

Communication is a difficult metric to report and analyze
since all communication in our algorithms is asynchronous.
However, to measure the impact of parallelization that in-
volves communication, we measure the time required to post
send and receive operations and associated communication
management.

To measure the impact of I/O upon parallelization, time
spent reading blocks from disk is recorded as well as the
number of times blocks are loaded and purged. Because not
all the blocks will fit into memory, a LRU cache, with a
user defined upper bound, is implemented to handle block
purging. To measure the efficiency of this aspect of the
algorithm, we define E, block efficiency, as the ratio of the
number of blocks loaded minus the number of blocks purged
to the number of blocks loaded.

E =
BL −BP

BL
(2)

For each algorithm, we run using various processor counts
on several representative datasets described in Section 3.2

Figure 5: A logarithmic scale plot of wall clock times
for all three algorithms, as applied to the astro-
physics dataset with both sparse and dense initial
seed points.

and several initial seeding conditions. To compare different
parallelization strategies, we compare performance on fixed
problems and processor counts while varying the streamline
algorithm.

5.1 Astrophysics simulation
For the astrophysics case study, we create streamlines from
20,000 seed points with both sparse and dense initial seed
point placement.

For the astrophysics dataset, the graph in Figure 5 clearly
demonstrates the relative time performance of the three al-
gorithms, with the Hybrid Master/Slave algorithm demon-
strating better performance than either Load On Demand or
Static Allocation for both spatially sparse and dense initial
seed points. However, even at 512 processors, the difference
between Hybrid Master/Slave and Static Allocation for the
spatially sparse seed point set is only a factor of 3.8, so we
must look at other metrics to determine a winner. An exam-
ination of total time spent in I/O, as shown in Figure 6, is
particularly instructive. In this graph, we see that the Hy-
brid Master/Slave algorithm performs very close to the ideal,
as exemplified by the Static Allocation algorithm. Though
Load On Demand performs closely to Hybrid Master/Slave
from a time point of view, it spends an order of magnitude
more time in I/O for both seed point initial conditions.

We next consider block efficiency (see Equation 2), as shown
in Figure 7 for all three algorithms. Static Allocation per-
forms ideally, loading each block once and never purging.
Load On Demand performs least efficiently as blocks are
loaded and reloaded many times. The performance of the
Hybrid Master/Slave algorithm is close to ideal for both
sparse and dense seed points. The ability of the Hybrid Mas-
ter/Slave algorithm to perform so well for both seed point
sets is very encouraging.

It is also useful to consider the time spent in communication.



Figure 6: A logarithmic scale plot of total time spent
doing I/O for all three algorithms, as applied to the
astrophysics dataset with both sparse and dense ini-
tial seed points.

Figure 8 shows the communication pattern for both initial
seed point conditions for Hybrid Master/Slave vs. Static Al-
location. For the sparse initial condition, Static Allocation
performs approximately 20 times more communication than
Hybrid Master/Slave as streamlines are sent between the
processors that own the blocks. This trend remains even as
the number of processors is scaled up. For the dense ini-
tial condition, the separation increases by another order of
magnitude as Static Allocation performs between 165 and
340 times more communication as the processor count in-
creases. This is because the ratio of blocks needed to total
blocks decreases and large numbers of streamlines must be
communicated to the processors that own the blocks. (Obvi-
ously, no communication occurs with the Load On Demand
algorithm.)

5.2 Magnetically confined fusion simulation
For the magnetically confined fusion case study, we create
streamlines from 10,000 seed points with both sparse and
dense initial seed point placement.

For the fusion dataset, the graph in Figure 9 demonstrates
the relative time performance of the three algorithms. In
the fusion dataset, the nature of the vector field leads to
some interesting performance results. The magnetic field
in a fusion simulation rotates within the toroidal contain-
ment core. Because of this, regardless of seed placement,
the streamlines tend to fill the interior of the torus fairly
uniformly. Static Allocation and Hybrid Master/Slave per-
form nearly identically for both initial conditions. Load On
Demand performs poorly for spatially sparse seed points,
but very competitively with Static Allocation and Hybrid
Master/Slave for a dense seed point set. In the case of Load
On Demand with a dense seed point set, good performance
is obtained because the working set of active blocks fits in-
side memory and few blocks must be purged to advance the
streamlines around the toroidal core. An analysis of wall
clock time does not clearly indicate a dominant algorithm

Figure 7: Block efficiency for all three algorithms, as
applied to the astrophysics dataset with both sparse
and dense initial seed points.

between Static Allocation and Hybrid Master/Slave, so fur-
ther analysis is warranted. But it is encouraging that Hybrid
Master/Slave can adapt to both initial conditions.

The graph of total I/O time is shown in Figure 10. In both
seed point initial conditions, as expected, Load On Demand
performs more I/O. However, Load On Demand does not
have the communication costs and latency of the other two
algorithms and so for the case of the dense seed point initial
condition, is able to overcome the I/O penalty to show good
overall performance.

The graph of total communication time is shown in Figure
11. For a dense seed point set, communication is very high
for the Static Allocation algorithm. Since the streamlines
tend to be concentrated in an isolated region of the torus,
many streamlines must be communicated to the block own-
ing processors. For a sparse seed set, the streamlines are
more uniformly distributed and communication costs are
therefore lower.

The graph of block efficiency is shown in Figure 12. It is
interesting to note that the block efficiency of Hybrid Mas-
ter/Slave is less than in the astrophysics case study. How-
ever, overall performance is still very strong. This indicates
that for this particular dataset, better overall performance
dictates that more blocks should be replicated across the set
of resources.

5.3 Thermal hydraulics simulation
For the the sparse case in the thermal hydraulics simulation,
we distributed 4,096 seed points evenly on a 16x16x16 grid
throughout the box. For the densely distributed case we
placed 22,000 seed points around one of the water inlets
in the simulation. The graph for total wall clock time is
shown in Figure 13. In the sparse case, all three algorithms
have similar run-time, consistent with the performance in
the previous sections. Note that the performance of all three
algorithms is remarkably similar (within a few seconds of



Figure 8: A logarithmic scale plot of total time
spent performing communication for all three algo-
rithms, as applied to the astrophysics dataset with
both sparse and dense initial seed points.

each other) with 512 processors, because this use case is not
overly taxing.

The dense seed point case, however, is much more interest-
ing. First, the Static Allocation algorithm ran out of mem-
ory and was unable to run. This is because all 22,000 seed
points were being processed on a single processor. Even if
sufficient memory were available, we would still see tremen-
dous load imbalance, because one processor would be ad-
vecting streamlines while the others spin idle. This example
illustrates how poorly suited this algorithm is for dense seed
point configurations. Also, recall that in Section 3, we iden-
tified that such configurations lead to interesting analysis
and pictures, so this fundamental limitation of the algorithm

Figure 9: A logarithmic scale plot of wall clock
time for all three algorithms, as applied to the fu-
sion dataset with both sparse and dense initial seed
points.

Figure 10: A logarithmic scale plot of total time
spent doing I/O for all three algorithms, as applied
to the fusion dataset with both sparse and densely
placed seed points.

is noteworthy.

Further, note that the Load On Demand algorithm outper-
formed the Hybrid Master/Slave algorithm in the dense case.
To understand this, it is important to understand the bal-
ance between computation and I/O in this problem. All of
the seed points are located in the same portion of the data
set, meaning that very little data needs to be read off disk.
Because there are so many seed points, the large majority of
the execution time is spent doing particle advection. Also,
because we only integrated the streamlines a short distance,
the streamlines did not travel very far and hence it was not
necessary to read many new domains in off disk. This ex-
plains the excellent scaling of Load On Demand, because,
although data is read redundantly (Load On Demand’s ma-
jor flaw), not much data needs to be read in overall. (Note
that Load On Demand’s I/O times, Figure 14, are not scal-
ing, but that its wall time, Figure 13, does appear to scale,
meaning that I/O costs are minor in total execution time.)
Essentially, because there are so many streamlines, the I/O
time is hidden altogther. So, in this boundary case, Hybrid
Master/Slave performs worse, because it doesn’t have all of
its processors working at full efficiency, as Load On Demand
does.

6. GENERAL ALGORITHM CHARAC-
TERISTICS

As presented in Section 4, the three algorithms we present
parallelize across different axes. Load On Demand paral-
lelizes across streamlines, loading blocks as needed with no
communication and the associated latency. This algorithm
is well suited to datasets that can fit largely in memory or
that exhibit flow that is free of vortex-type features larger
than the block size. The disadvantage of this algorithm is
that it can become I/O bound.

Static Allocation parallelizes across blocks, communicating
streamlines as needed, and as such, performs minimal I/O.



Figure 11: A logarithmic scale plot of total time
spent performing communication for all three algo-
rithms, as applied to the fusion dataset with both
sparse and densely placed seed points.

This algorithm is well suited to datasets were I/O is expen-
sive and seed point sets and flow that distributes streamline
computation uniformly throughout the dataset. However,
this algorithm can perform very poorly if the streamline
distribution is not uniform, e.g. a flow with sources and
sinks. In this case, the streamline integration will be largely
focused on the few processors that contain the blocks with
the sources and sinks.

Hybrid Master/Slave was designed to parallelize across both
streamlines and blocks and to dynamically adapt the paral-
lelization strategies as the streamline computation evolves.
Our tests cases indicate that this algorithm is best suited for
a wide variety of situations and is the recommended algo-
rithm to use for general purpose parallel streamline compu-

Figure 12: Block efficiency for all three algorithms,
as applied to the fusion dataset with both sparse and
densely paced seed points.

Figure 13: A logarithmic scale plot of wall clock time
for all three algorithms, as applied to the thermal
hydraulics dataset with both sparse and dense initial
seed points.

tation. It is particularly recommended when the flow field
is not well understood, as Hybrid Master/Slave will dynam-
ically adapt to the specific nature of the flow. Once the
nature of the flow is well understood, the Static Allocation
or Load On Demand algorithms are suggested, if they are
able to optimize their strengths.

7. SUMMARY
In this paper we undertook a performance characterization
of two algorithms based on established streamline paral-
lelization approaches, and one novel algorithm for the gener-
ation of streamlines for flow analysis of large datasets. Our
results demonstrate fundamental scalability limitations of
the Static Allocation and Load On Demand algorithms for

Figure 14: A logarithmic scale plot of total I/O time
for all three algorithms, as applied to the thermal
hydraulics dataset with both sparse and dense initial
seed points.



Figure 15: A logarithmic scale plot of total commu-
nication time for all three algorithms, as applied to
the thermal hydraulics dataset with both sparse and
dense initial seed points.

specific application problems due to memory and processing
constraints. This is a consequence of the fact that both al-
gorithms parallelize only over data size or streamline count,
respectively.

We demonstrated that a hybrid approach that adapts to
the system resources and the unknown flow characteristics
provides good scalability for a representative set of large
datasets. We contribute a new heuristic-based algorithm
that scales over both data size and seed set size by balancing
I/O, communication, and computation to achieve scalability
on large numbers of processors and for very large data.

While our hybrid algorithm typically performs better than

Figure 16: Block efficiency for all three algorithms,
as applied to the thermal hydraulics dataset with
both sparse and densely paced seed points.

than the other two algorithms, there are circumstances in
which Static Allocation and Load On Demand algorithms
can be superior to the hybrid algorithm, mostly due to the
exploitation of efficiencies in communication.

8. FUTURE WORK
Going forward with this work, we plan to further improve
our hybrid parallelization scheme to further address load im-
balances. Distributing the work is based on several heuris-
tics that may be more or less appropriate depending on data
set properties. One possibility for improving scaling behav-
ior would be observing communication and processor uti-
lization patterns and modify used heuristics based on these
indicators. Specifically, we have found that processor starva-
tion is often a limitation to large scalability that we believe
can be addressed through additional heuristics.

Our current study examines in detail the performance of
streamline computation for large-scale data sets. The same
considerations also apply to pathlines, which depend on con-
siderably larger amounts of data since it becomes necessary
to advance through multiple time steps of a simulation as
well as space. We have performed preliminary studies that
suggest that, similar to streamlines computation, minimiz-
ing redundant I/O remains a major challenge. In partic-
ular, computing pathlines leads to many small reads that
can often overwhelm the file system and dramatically affect
scalability. We intend to explore reading a block from disk
only once and communicating it in the same way as stream-
lines are passed around in our current implementation and
what impact this would have on performance. Furthermore,
we plan to develop improved caching strategies for stream-
and pathlines. One topic of interest is whether some limited
pre-processing (e.g., binary clustering used by Hu et al. [24])
can be used to gain a sufficient overview over streamline be-
havior to make an informed decision concerning distributing
blocks to streamlines.

Another important research area is considering algorithms
that do not depend on an a priori knowledge of all seed
points, but add new seed points dynamically based on an
ongoing streamline calculation. One application area where
this becomes necessary is the calculation of stream surfaces.
It would be interesting to study how these additional seed
points affect load balancing, in particular since it may be
possible to base “educated guesses” on local streamline be-
havior. In principle, our architecture should be suited to the
dynamic creation of streamlines with few modifications.

Communicating streamline geometry accounts for a large
proportion of communication cost observed in our studies,
particularly when following streamlines for a long period of
time. In many streamline applications (e.g. Poincaré punc-
ture plots) the total streamline geometry is not of interest in
future integration. In these classes of problems, it should be
sufficient to communicate solver state as well as some rela-
tively compact derived quantities. It would be interesting to
determine how these properties may be used to reduce com-
munication overhead and how doing so affects the relative
performance of our distribution strategies.



9. ACKNOWLEDGMENTS
This work was funded in part by the SciDAC2 Visualization
and Analytics Center for Enabling Technologies and ASCR’s
Visualization Base Program by the Director, Office of Sci-
ence, Office of Advanced Scientific Computing Research, of
the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098.

10. REFERENCES
[1] VisIt – Software that delivers Parallel, Interactive

Visualization. http://visit.llnl.gov/.

[2] B. G. Becker, N. L. Max, and D. A. Lane. Unsteady
flow volumes. In IEEE Visualization, pages 329–, 1995.

[3] R. Bruckschen, F. Kuester, B. Hamann, and K. I. Joy.
Real-time out-of-core visualization of particle traces.
In Proceedings of the IEEE Symposium on parallel and
large-data visualization and graphics (PVG), pages
45–50, Piscataway, NJ, USA, 2001. IEEE Press.

[4] B. Cabral and L. C. Leedom. Highly parallel vector
visualization using line integral concolution. In Proc.
SIAM PPSC ’95, pages 802–807, 1995.

[5] C. Y. Cardall, A. O. Razoumov, E. Endeve, E. J.
Lentz, and A. Mezzacappa. Toward five-dimensional
core-collapse supernova simulations. Journal of
Physics: Conference Series, 16:390–394, 2005.

[6] L. Chen and I. Fujishiro. Optimizing parallel
performance of streamline visualization for large
distributed flow datasets. In Proc. IEEE VGTC
Pacific Visualization Symposium 2008, pages 87–94,
2008.

[7] D. Ellsworth, B. Green, and P. Moran. Interactive
terascale particle visualization. In Proc. IEEE
Visualization, pages 353–360, Washington, DC, USA,
2004. IEEE Computer Society.

[8] E. Endeve, C. Y. Cardall, R. D. Budiardja, and
A. Mezzacappa. Generation of Strong Magnetic Fields
in Axisymmetry by the Stationary Accretion Shock
Instability. ArXiv e-prints, Nov. 2008.

[9] P. Fischer, J. Lottes, D. Pointer, and A. Siegel.
Petascale algorithms for reactor hydrodynamics.
Journal of Physics: Conference Series, 125:1–5, 2008.

[10] C. Garth, H. Krishnan, X. Tricoche, T. Bobach, and
K. I. Joy. Generation of accurate integral surfaces in
time-dependent vector fields. IEEE Transactions on
Visualization and Computer Graphics,
14(6):1404–1411, 2008 Nov-Dec.

[11] E. Hairer, S. P. Nørsett, and G. Wanner. Solving
Ordinary Differential Equations I, second edition,
volume 8 of Springer Series in Comput. Mathematics.
Springer-Verlag, 1993.

[12] G. Haller and G. Yuan. Lagrangian coherent
structures and mixing in two-dimensional turbulence.
Physica D, 147:352–370, 2000.

[13] J. P. M. Hultquist. Constructing stream surfaces in
steady 3d vector fields. In A. E. Kaufman and G. M.
Nielson, editors, Proceedings of IEEE Visualization
1992, pages 171 – 178, Boston, MA, 1992.

[14] D. A. Lane. UFAT – A Particle Tracer for
Time-Dependent Flow Fields. In Proc. IEEE
Visualization ’94, pages 257–264, 1994.

[15] M. Mathur, G. Haller, T. Peacock, J. Ruppert-Felsot,
and H. Swinney. Uncovering the lagrangian skeleton of

turbulence. Phys. Rev. Lett., submitted, 2006.

[16] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post,
and M. Chen. Over Two Decades of
Integration-Based, Geometric Flow Visualization. In
M. Pauly and G. Greiner, editors, Eurographics STAR
- State of The Art Report (to appear), April 2009.

[17] S. Muraki, E. B. Lum, K.-L. Ma, M. Ogata, and
X. Liu. A pc cluster system for simultaneous
interactive volumetric modeling and visualization. In
Proc. IEEE Symp. on Parallel and Large-Data
Visualization and Graphics (PVG), page 13,
Washington, DC, USA, 2003. IEEE Computer Society.

[18] P. J. Prince and J. R. Dormand. High order embedded
runge-kutta formulae. Journal of Computational and
Applied Mathematics, 7(1), 1981.

[19] S. Shadden, J. Dabiri, and J. Marsden. Lagrangian
analysis of fluid transport in empirical vortex ring
flows. Physics of Fluids, 18:047105, 2006.

[20] C. Sovinec, A. Glasser, T. Gianakon, D. Barnes,
R. Nebel, S. Kruger, S. Plimpton, A. Tarditi, M. Chu,
and the NIMROD Team. Nonlinear
magnetohydrodynamics with high-order finite
elements. J. Comp. Phys., 195:355, 2004.

[21] D. Sujudi and R. Haimes. Integration of particles and
streamlines in a spatially-decomposed computation. In
Proc. Parallel Computational Fluid Dynamics, Los
Alamitos, CA, 1996. IEEE Computer Society Press.

[22] S.-K. Ueng, C. Sikorski, and K.-L. Ma. Out-of-core
streamline visualization on large unstructured meshes.
IEEE Transactions on Visualization and Computer
Graphics, 3(4):370–380, 1997.

[23] D. Xue, C. Zhang, and R. Crawfis. Rendering implicit
flow volumes. In Proc. IEEE Visualization ’04
Conference, pages 99–106, 2004.

[24] H. Yu, C. Wang, and K.-L. Ma. Parallel hierarchical
visualization of large time-varying 3d vector fields. In
Proc. Supercomputing 2007, 2007.


